

transfer function can be synthesized into a low-pass prototype network containing integral cross coupling in the form of a "tri-section" of impedance inverters. Each tri-section realizes one integrated pole.

Comparisons made between conventional symmetrical techniques and filters built using the methods described here show that a significant reduction in degree can be obtained for a given selectivity by utilizing an asymmetric response.

An ordinary Chebyshev response can be recovered from the integrated pole transfer function by letting all the ω_i tend to infinity since

$$\lim_{\omega_i \rightarrow \infty} \frac{1 - \omega \omega_i}{\omega - \omega_i} = \omega.$$

ACKNOWLEDGMENT

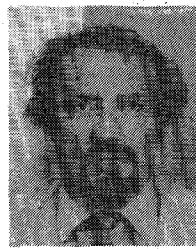
The authors wish to thank R. J. Cameron for his help in the numerical aspects of this work.

REFERENCES

- [1] D. S. G. Chambers and J. D. Rhodes, "Asymmetric synthesis," in *Proc. 11th European Microwave Conf.*, Sept. 1981, pp. 105-110.
- [2] R. J. Cameron and J. D. Rhodes, "General extracted pole synthesis technique, with applications to low loss TE₀₁₁ mode filters," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-28, pp. 1018-1028, Sept. 1980.
- [3] J. D. Rhodes and S. A. Alseyab, "The generalized Chebyshev low-pass prototype filter," *Int. J. Circuit Theory Appl.*, vol. 8, pp. 113-125, 1980.
- [4] Richard M. Kurzrok, "General three-resonator filters in waveguide," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-14, pp. 46-47, Jan. 1966.

- [5] J. D. Rhodes, *Theory of Electrical Filters*. New York: Wiley-Interscience, 1976.

David S. G. Chambers received the B.Sc. degree from the University of Leeds, Leeds, England.


Since 1980 he has been with Filtronic Components Ltd., Shipley, England, where he specializes in the research, development, and production of microwave filters and multiplexers.

John David Rhodes (M'67-F'80) was born in Doncaster, Yorkshire, England, on October 9, 1943. He received the B.Sc., Ph.D., and D.Sc. degrees in electrical engineering from the University of Leeds, Yorkshire, England, in 1964, 1966, and 1974, respectively.

He has worked as a Senior Research Engineer with Microwave Development Laboratories, Inc., Natick, MA, and has held positions of Lecturer, Reader, and Professor at Leeds University. In 1977 he formed Filtronic Components Ltd., Shipley, West Yorkshire, England, which has grown into a successful microwave company and he holds the position of Chairman and Managing and Technical Director, with a part-time position of Industrial Professor at Leeds University.

Dr. Rhodes has been the recipient of five international research awards including the Browder J. Thompson, Guillimen-Cauer Awards, and the Microwave Prize. He has also been a member of several professional committees.

Electronically Cold Microwave Artificial Resistors

ROBERT L. FORWARD, SENIOR MEMBER, IEEE, AND TERRY C. CISCO, MEMBER, IEEE

Abstract—A large percentage of microwave field-effect transistors (FETs) are shown to act as a broad-band artificial resistor with a resistance of about 25 Ω when their drain is connected to their gate. The resistance appears between the gate-drain lead and the source lead. This resistance can be raised to 50 Ω with its reactive components eliminated over a reasonable bandwidth by using a matching transmission line of the proper impedance and a length near a quarter-wave at midband. An HFET-1000 constructed in this configuration showed an impedance of

$18 \pm 3 \Omega$ over an octave bandwidth, and when transformed with a 30- Ω quarter-wave transmission line produced a resistance of $51 \pm 1 \Omega$ from 8 to 13 GHz. A noise analysis shows that, at some frequencies, some FET's in this configuration will produce artificial resistors with an effective noise temperature as low as 67 K. The addition of a transmission line in the gate lead and in the feedback line allows the effective temperature of any FET to be made substantially below room temperature. No cryogenic cooling is required. The addition of a half-wave to either transmission line will produce a low-noise negative resistor which can be used in a negative resistance amplifier circuit to produce an amplifier with the gain of a tunnel diode and the noise figure of a FET. These "electronically cold" artificial resistors could improve the overall noise figure of a microwave receiver if they replaced the first-stage amplifiers and the standard room-temperature loads in critical front-end circuits using loads in conjunction with circula-

Manuscript received March 22, 1982; revised August 2, 1982.

R. L. Forward is with Hughes Research Laboratories, Malibu, CA 90265.

T. C. Cisco is with Hughes Missile Systems Division, Canoga Park, CA 91304.

tors or balanced amplifiers and switches. They can also be used to terminate long-signal lines, where they will not cause the usual 3-dB loss in signal-to-noise ratio that occurs when a standard noisy resistor is used. Finally, they may also find use as an artificial "cold load" in radio astronomy and microwave calibration test setups without requiring a cryogenic capability.

I. INTRODUCTION

IT HAS long been known that room-temperature active artificial resistors can be made with effective noise temperatures significantly below room temperature. The first "electronically cold" artificial resistors were made using vacuum tubes [1], [2] and reached effective temperatures of 77 K. With the advent of semiconductors, it was found that the effective noise temperature of a semiconductor device was typically $T_{\text{eff}} \sim 0.5\text{--}0.6T_0$ [3]. For example, a forward-biased Schottky diode will act as a 50- Ω microwave load with an effective temperature of 165 K.

Later, with the advent of research on detectors for gravitational waves and Newtonian gravity gradient fields, a number of additional designs for artificial resistors were generated [4]–[9] that demonstrated effective noise temperatures well below 10 K at audio frequencies.

More recent work has concentrated on achieving at microwave frequencies effective noise temperatures below the 165 K obtainable with forward-biased Schottky diodes. A recent paper [10] used inductive feedback in the source lead of a FET to achieve an effective temperature of 50 K at *L*-band. Our paper discusses the use of drain-to-gate feedback in a FET to produce a low-noise temperature artificial resistor, as well as the use of transmission lines from an input port to the gate and the input port to the drain to minimize the effective noise temperature.

II. ARTIFICIAL RESISTORS FROM FET'S

A typical microwave FET has an equivalent circuit given by Fig. 1, where typically R_g is in tens of ohms, C_g is in tenths of picofarads, and g_m is in tens of milliseimens. If we connect the drain to the gate, the resulting circuit is given by Fig. 2. We now have a single-port device. When a voltage V_{in} is applied across the two terminals of the port, a current I_{in} flows into the port. The input impedance of the device is then just

$$Z_{\text{in}} = \frac{V_{\text{in}}}{I_{\text{in}}}$$

where

$$I_{\text{in}} = I_g + I_d = \frac{V_{\text{in}}}{R_g + jX_g} + g_m V_g$$

and

$$V_g = \frac{jX_g}{R_g + jX_g} V_{\text{in}}.$$

Defining

$$r_m \equiv \frac{1}{g_m}$$

and substituting into the previous equation yields the fol-

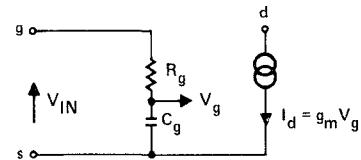


Fig. 1. Equivalent circuit of a microwave FET.

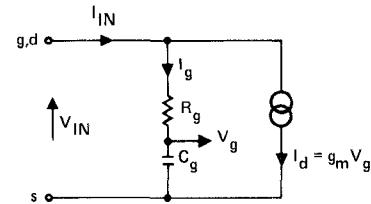


Fig. 2. Equivalent circuit of a microwave FET with the drain connected to the gate

lowing expression for the input impedance:

$$Z_{\text{in}} = r_m \frac{(R_g r_m + X_g^2) + jX_g(r_m - R_g)}{X_g^2 + r_m^2}.$$

If the reactance

$$X_g = -\frac{1}{\omega C_g}$$

is significantly greater than the resistances r_m and R_g , which is increasingly true at lower frequencies, then the input impedance is dominated by the transconductance of the FET

$$Z_{\text{in}} \rightarrow r_m = \frac{1}{g_m}.$$

Since the transconductance of a commercially available microwave FET is typically 40 mS, the typical equivalent resistance of a fed-back FET is 25 Ω .

The lumped circuit model used for a FET in Fig. 1 is a simplified model; it served to show how, in a fed-back FET circuit, the input admittance is dominated by the transconductance. To calculate the actual input impedance of a real FET, one uses the manufacturer's scattering coefficient (*S*-parameter) data. For circuit analysis, we convert these data to an equivalent admittance matrix [Y_{mn}] using standard handbook formulas or a microwave analysis program such as COMPACT.

III. CALCULATION OF INPUT IMPEDANCE

Fig. 3 shows a circuit schematic for calculating the input impedance of a fed-back FET in terms of its admittance matrix [Y_{12}]. For clarity in relating the circuit equations to the figure, we specifically call out the two port voltages separately even though they are equal to each other.

The input impedance of the circuit is obtained by calculating the ratio of the input voltage to the input current

$$Z_{\text{in}} = \frac{V_{\text{in}}}{I_{\text{in}}}.$$

Using Fig. 3 and defining

$$Y_{\text{in}} = (Y_{11} + Y_{12} + Y_{21} + Y_{22})$$

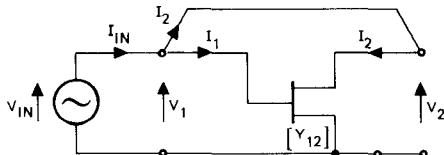


Fig. 3. Schematic for calculating input impedance.

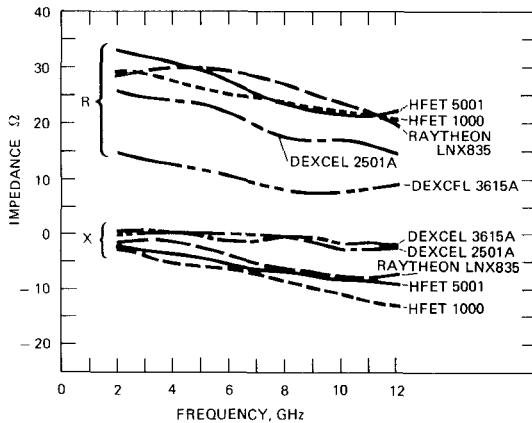
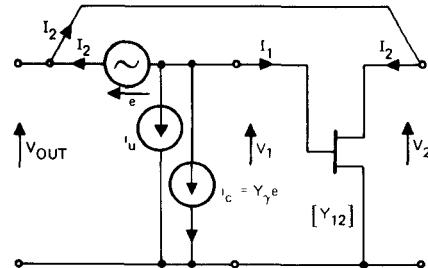


Fig. 4. Resistive and reactive components of impedance looking into typical microwave FET's with drain connected to gate.

we find that the input impedance of the fed-back FET is just

$$Z_{in} = \frac{1}{Y_{in}} = \frac{Y_{in}^*}{|Y_{in}|^2}.$$

Using the scattering parameter data available from various manufacturers, we calculated the real and imaginary parts of the impedance seen in five selected microwave FET's at frequencies ranging from 2 to 12 GHz. These results are shown in Fig. 4. As can be seen, the input impedance is predominantly resistive, becoming more so at lower frequencies. The equivalent resistances range from 7 to 34 Ω with most values being around 25 Ω .


Although not all FET's display this behavior, a significant fraction do. These artificial resistors can then be used (with suitable impedance-matching transmission lines) as microwave loads.

IV. NOISE ANALYSIS

We want to carry out a noise analysis of these artificial resistors to determine the voltage noise appearing across the port and to compare that with the thermal Johnson voltage noise appearing across the terminal of a comparable resistor. For the noise analysis, we will use the conventions of the IRE Standard for Noise in Linear Twoports, 1959 [11] and its companion theoretical paper [12]. In these papers, it is shown that a noisy amplifier can be represented by a noiseless amplifier with the same admittance parameters, plus three noise sources arranged at the input. These are the equivalent input noise voltage e , the equivalent input uncorrelated noise current i_u , and the equivalent input correlated noise current $i_c(e)$.

The noise analysis of a FET with its drain connected to its gate by a simple short uses the schematic shown in Fig. 5.

Solving for V_{out} , letting $Y_{in} = Y_{11} + Y_{12} + Y_{21} + Y_{22}$ as be-

Fig. 5. Schematic for calculation of Thevenin open-circuit equivalent voltage (i.e., V_{out} with $I_{out} = 0$).

fore, and defining $Y_e = Y_\gamma - Y_{11} - Y_{21}$, we get

$$V_{out} = -\frac{Y_e}{Y_{in}} e - \frac{i_u}{Y_{in}}.$$

Since e and i_u are by definition uncorrelated, the mean square noise voltage put out by the artificial resistor is calculated by squaring each of the noise terms separately and adding

$$\overline{V_{out}^2} = \frac{|Y_e|^2}{|Y_{in}|^2} \overline{e^2} + \frac{\overline{i_u^2}}{|Y_{in}|^2}.$$

The "available" noise power from an impedance at a temperature T in the bandwidth B , regardless of the value of the impedance, is obtained when the impedance is connected to a matching load and is given by

$$P_{avail} = kTB$$

where $k = 1.38 \times 10^{-23}$ J/K is Boltzmann's constant.

The maximum noise power obtainable from the artificial resistor is also obtained when it sees a matching load and is given in terms of the output noise voltage as

$$P_{max} = \frac{\overline{V_{out}^2}}{4\text{Real}(Y_{in}^{-1})}$$

where $\text{Re}(Y_{in}^{-1}) = R_{in}$.

We can now define an equivalent noise temperature T_{eq} for the artificial resistor as that temperature where the "available" power of the equivalent impedance equals the maximum noise power obtainable from the circuit

$$kT_{eq}B = \frac{\overline{V_{out}^2}}{4R_{in}}$$

or

$$\overline{V_{out}^2} = 4kT_{eq}BR_{in}.$$

Substituting this equation and the equations for $\overline{e^2}$ and $\overline{i_u^2}$ into the mean-square output noise voltage equation, and dividing through by $4kT_0BR_{in}$, we obtain an equation for the equivalent noise temperature of the fed-back FET

$$\frac{T_{eq}}{T_0} = \frac{|Y_e|^2 R_{in} + G_u}{|Y_{in}|^2 R_{in}}.$$

V. EXAMPLE NOISE CALCULATION

To demonstrate that the equivalent noise temperature of the artificial resistor can be less than room temperature, let us take the noise and admittance parameters for a

Hewlett-Packard Microwave FET type HFET-1000 (chip) at 11 GHz, when operated at its low-noise point ($V_{DS} = 3.5$ V, $I_{DS} = 15$ percent of I_{DSS}).

Measured Device Noise Model Parameters:

Noise resistance	$R_n = 0.53$ (26.5 Ω).
Optimum reflection coefficient	$\rho_o = 0.632$ at 115°.
Optimum noise figure	$F_o = 3.27$ dB (2.12 ratio).

Measured Device Y Parameters:

$$\begin{aligned} Y_{11} &= 12.3 + 35.0j \text{ mS} \\ Y_{12} &= 0.6 - 2.5j \text{ mS} \\ Y_{21} &= 20.8 - 23.4j \text{ mS} \\ Y_{22} &= 2.6 + 11.1j \text{ mS.} \end{aligned}$$

From these we can calculate the input admittance

$$Y_{in} = Y_{11} + Y_{12} + Y_{21} + Y_{22} = 36.3 + 20.2j \text{ mS}$$

and the input impedance

$$Z_{in} = \frac{1}{Y_{in}} = \frac{Y_{in}^*}{|Y_{in}|^2} = 21.0 - 11.7j \Omega.$$

The normalized optimum noise source admittance (Y_o) is then obtained from the optimum noise source reflection coefficient (ρ_o) by

$$Y_o = \frac{1 - \rho_o}{1 + \rho_o} = 0.695 - 1.324j = G_0 + jB_0.$$

From these we can obtain the fundamental noise parameters B_γ , G_γ , and G_u (the unnormalized values are in parentheses)

$$B_\gamma = -B_0 = 1.324 \text{ (26.5 mS)}$$

$$G_\gamma = \frac{(F_o - 1)}{2R_n} - G_0 = 0.362 \text{ (7.2 mS)}$$

$$G_u = R_n (G_0^2 - G_\gamma^2) = 0.187 \text{ (3.7 mS).}$$

The correlation admittance is then

$$Y_\gamma = G_\gamma + jB_\gamma = 7.2 + 26.5j \text{ mS}$$

and the admittance coefficient of the voltage noise term is easily calculated to be

$$Y_e = Y_\gamma - Y_{11} - Y_{21} = -25.9 + 14.9j \text{ mS.}$$

We now gather all the factors needed to calculate the equivalent noise temperature

$$R_{in} = 21.0 \Omega$$

$$R_n = 26.5 \Omega$$

$$G_u = 3.7 \times 10^{-3} \text{ S}$$

$$|Y_{in}|^2 = 1.726 \times 10^{-3} \text{ S}^2$$

$$|Y_e|^2 = 0.893 \times 10^{-3} \text{ S}^2$$

and find that the normalized equivalent noise temperature is

$$\begin{aligned} \frac{T_{eq}}{T_0} &= \frac{|Y_e|^2 R_n + G_u}{|Y_{in}|^2 R_{in}} \\ &= 0.653 + 0.102 = 0.755 \end{aligned}$$

which is three-fourths of room temperature. Assuming $T_0 = 290$ K, we find

$$T_{eq} = 219 \text{ K.}$$

Note that it is the first term that dominates the noise. If we neglect the second term and expand Y_e and Y_{in} , we get

$$\frac{T_{eq}}{T_0} \simeq \frac{|Y_\gamma - Y_{11} - Y_{21}|^2}{|Y_{11} + Y_{12} + Y_{21} + Y_{22}|^2} \frac{R_n}{R_{in}}.$$

In most microwave FET's, the admittance term Y_{21} is significantly larger than any of the other admittance terms, so to first order, $|Y_e|^2 \simeq |Y_{in}|^2$ and the equivalent temperature equation reduces to

$$\frac{T_{eq}}{T_0} \propto \frac{R_n}{R_{in}}.$$

VI. "ELECTRONICALLY COLD" MICROWAVE LOADS

Using the manufacturer's data for the HFET-1000, we calculate that it should have a low equivalent noise temperature at frequencies above 10 GHz, reaching a low of 80 K at 12 GHz. This is plotted in Fig. 6 along with the noise resistance R_n , the optimum noise figure F_o , and the unmatched input impedance Z_{in} . As can be seen, there is some correlation between the equivalent noise temperature T_{eq} and the noise resistance R_n .

At lower frequencies, we have calculated that the packaged FET, the 2N6680 (HFET-1101), has a low equivalent noise temperature in the region below 6 GHz, reaching temperatures of 67 K. The package causes an electrical resonance in the behavior of the fed-back FET artificial resistor configuration which makes it unsuitable for operation as an artificial resistor in the region from 8 to 10 GHz.

These low-noise microwave loads can be used to improve overall system performance in critical front-end radar and communication receivers by replacing loads used in conjunction with balanced amplifiers or switches. They can also be used to terminate long-signal lines, where they will not cause the usual 3-dB loss in signal-to-noise ratio that occurs when a standard noisy resistor is used. Finally, they may also find use as an artificial "cold load" in radio telescopes [3] and microwave calibration test setups without requiring a cryogenic capability.

VII. EXPERIMENT

To check out the analysis, we fabricated an artificial microwave resistor using an HFET-1000 with its drain fed back onto its gate through a large blocking capacitor, keeping all leads as short as possible. By designing our experimental configuration to place the blocking capacitor on top of one of the bias current fingers, we were able to obtain a very stable very flat artificial resistor. As is shown in the top curve in the Smith chart in Fig. 7, the effective resistance varied from 21 Ω at 6 GHz to 15 Ω at 12 GHz, an octave bandwidth, while the reactance was near zero over most of the band. There was no change in impedance with bias voltage or current around the nominal operating values.

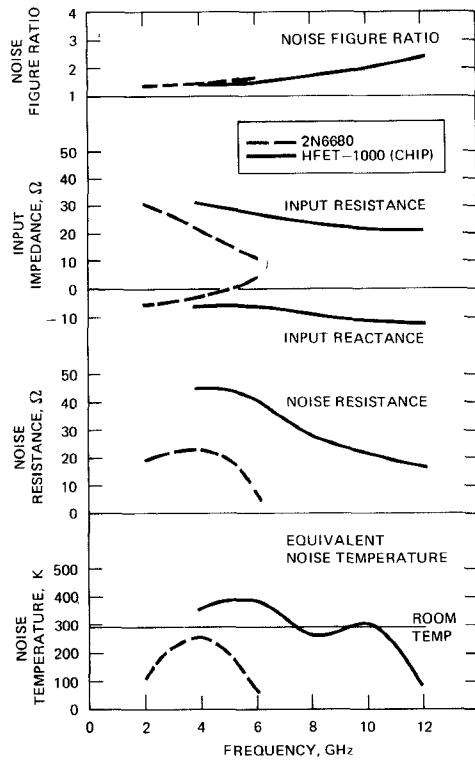
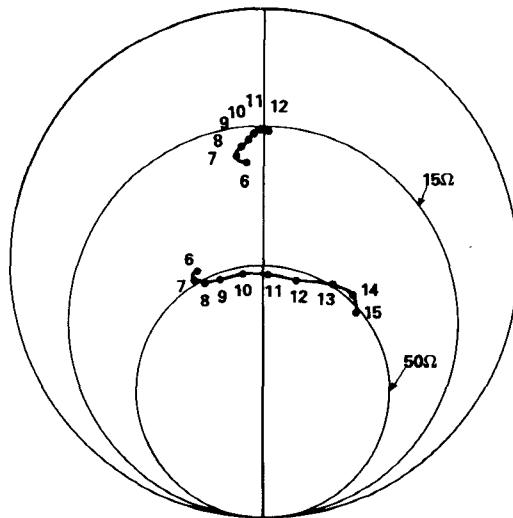
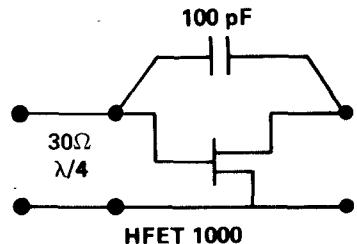




Fig. 6. Noise parameters for two FET's.

Fig. 7. Smith chart showing measured input impedances of artificial resistor before and after transformation to 50 Ω .

Measurements of the effective noise temperature of this resistor proved difficult. A slide tuner was used to convert the low effective resistance to the 50 Ω required by the noise measuring system, but the sharp response characteristics of the tuner made the bandwidth of the transformed resistor smaller than the bandwidth of the measuring system. However, by comparison with the noise of a room temperature resistor, it was estimated that at 9.5 GHz, the effective noise temperature was measurably below room temperature, while it was above room temperature at higher frequencies. Although we did see the below room temperatures predicted by the analyses, this trend with frequency

Fig. 8. Broad-band artificial 50- Ω load.

was opposite to what was calculated using the noise data from the manufacturer.

We then added a 30- Ω quarter-wave transmission line, as shown in Fig. 8, and produced a broad-band match to 50 Ω . As can be seen in the lower curve on the Smith chart in Fig. 7, the measured impedance now goes smoothly from $50-25j$ Ω at 8 GHz, through $52+0j$ Ω at 11 GHz, to $50+25j$ Ω at 13 GHz, or a bandwidth of 5 GHz.

VIII. TEMPERATURE MINIMIZATION USING TRANSMISSION LINES

We next examined the use of transmission lines with the fed-back FET to optimize the effective resistance and the equivalent temperature. The circuit we analyzed consists of two microwave transmission lines and a microwave FET. One transmission line is between the single input-output port of the device and the gate of the FET, while the other (acting as the feedback connection) is between the port and the drain of the FET (the source being common). In practice, there will also be a blocking capacitor in the feedback line and some inductance in the connections, but these reactances can be accommodated by slight changes in the lengths of the two transmission lines.

Since the available microwave analysis programs such as COMPACT are only suitable for two-port devices, we developed a detailed program that computes the effective input impedance, equivalent noise temperature, and stability for these one-port devices. Using this program, we found that by varying the lengths and impedances of the two transmission lines, we can not only change the effective resistance seen at the port, but we can also affect the noise temperature and stability.

One specific example we calculated is shown in Fig. 9. The circuit consists of an HFET-1000 with a 50- Ω transmission line of 180° at 11 GHz in the feedback loop and a 50- Ω 45° long line to the gate. The program indicates that with these parameters we should be able to produce an unconditionally stable resistor of $8.8 \pm 5.5j$ Ω with an effective noise temperature of 118 K. This resistor can be transformed to a standard 50- Ω artificial resistor with a near-quarter-wavelength 21- Ω transmission line. The temperature of this 50- Ω load will remain at 118 K.

We can turn this circuit into an amplifier by converting it into an electronically cold negative resistor. The negative resistor is obtained by leaving the feedback transmission line at 180° to insure circuit stability and increasing the gate transmission line by a half-wavelength to 235°. These

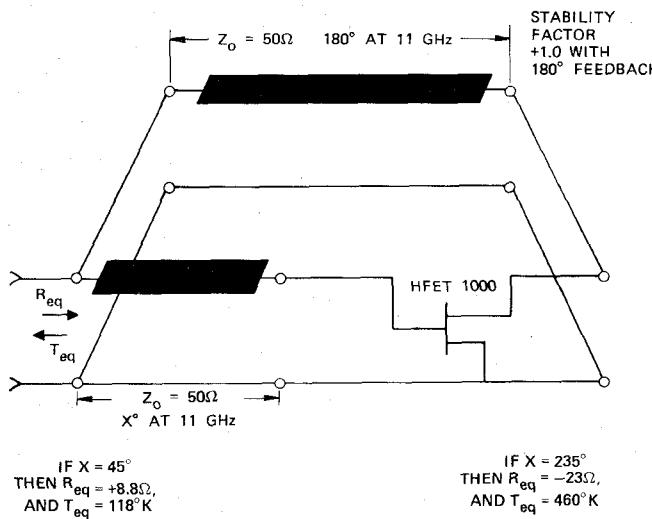


Fig. 9. Positive or negative electronically "cold" artificial resistor using transmission lines for tuning.

lengths for the transmission lines produce a negative resistor of $-23 + 32j \Omega$ with an effective noise temperature of 460 K (4.0 dB). Since the noise figure of the FET at 11 GHz is 3.27 dB or an effective noise temperature of 337 K, it is not surprising to see this noise temperature for the negative resistance. The negative resistor should be capable of producing an amplifier with the same noise temperature of 460 K or a 4.0-dB noise figure. Since it is a negative resistor, its gain in a negative resistance amplifier circuit (such as is used in tunnel diode amplifiers) is limited only by stability and bandwidth criteria. Using this approach, we should be able to get an amplifier with the gain of a tunnel diode and the noise figure of a FET.

Unfortunately, funding was not available to construct the electronically cold positive and negative resistors to check the accuracy of the analysis. In addition, recent advances in GaAs FET fabrication techniques have produced microwave FET's with significantly better noise figures than the HFET-1000. As soon as the appropriate microwave device parameters are available for these devices, they should be analyzed to determine their characteristics when used as an artificial resistor. With their better noise parameters, they should be significantly "colder" than the HFET-1000.

REFERENCES

- [1] W. S. Percival, "An electrically 'cold' resistance," *Wireless Eng.*, vol. 16, pp. 237-240, May 1939.
- [2] M. J. O. Strutt and A. van der Ziel, "Suppression of spontaneous fluctuations in amplifiers and receivers for electrical communication and for measuring devices," *Physica*, vol. 9, pp. 513-527, June 1942.
- [3] A. van der Ziel, *Solid State Physical Electronics*, 3rd ed. New York: Prentice Hall, 1976, p. 294.
- [4] M. J. Buckingham and E. A. Faulkner, "The principles of pulse signal recovery from gravitational antennas," *Radio Electron. Eng.*, vol. 42, pp. 163-171, Apr. 1972.
- [5] K. Oide, Y. Ogawa, and H. Hirakawa, "Artificial cold resistors," *Japan. J. Appl. Phys.*, vol. 17, pp. 429-432, Feb. 1978.
- [6] R. L. Forward, "Electronic cooling of resonant gravity gradiometers," *J. Appl. Phys.*, vol. 50, pp. 1-6, Jan. 1979.
- [7] R. L. Forward and G. D. Thurmond, "Network for simulating low-noise temperature resistors," U.S. Patent 4 156 859, May 29, 1979.
- [8] ———, "Network for simulating low-noise temperature resistors," U.S. Patent 4 176 331, Nov. 27, 1979.

- [9] R. L. Forward, "Network for simulating low temperature resistors," U.S. Patent 4 232 280, Nov. 4, 1980.
- [10] R. H. Frater and D. R. Williams, "An active 'cold' noise source," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 344-347, Apr. 1981.
- [11] H. A. Haus *et al.*, "IRE standards on methods of measuring noise in linear twoports, 1959," *Proc. IRE*, vol. 47, pp. 60-68, Jan. 1959.
- [12] H. A. Haus *et al.*, "Representation of noise in linear twoports," *Proc. IRE*, vol. 48, pp. 69-74, Jan. 1960.

Robert L. Forward (S'58-M'62-SM'68) received the B.S. degree in physics at the University of Maryland, College Park, in 1954, the M.S. degree in applied physics at the University of California at Los Angeles, in 1958, and the Ph.D. degree in physics at the University of Maryland, in 1965.

He has 28 years experience in electromagnetic theory, advanced propulsion systems, low-noise electronics, and gravitational sensors. He is currently conducting experimental research on sensors for robotic vehicles, gravity sensors, and space sciences.

From 1967 to 1974, he was Manager of the Exploratory Studies Department, supervising programs on gravitational and inertial instrumentation, information processing, artificial intelligence, light valve displays, hologram optics, organic chemistry, advanced propulsion, earthquake prediction, gravitational radiation astronomy, and space sciences, as well as being Principal Investigator on four contracts for R&D work on rotating gravitational mass sensors (an invention of Dr. Forward). He built the first laser interferometer gravitational radiation antenna in 1972, contributed to the investigation of quantum noise in laser systems, and in 1962 participated in the construction and operation of the first resonant bar antenna for detection of interstellar gravitational radiation (now in the Smithsonian Museum). Earlier, he contributed to the development of a low-noise ruby maser receiver for an X-band radar system. He is author of 48 published papers on gravitation, gravity sensors, advanced propulsion concepts, and low-noise electrical and mechanical systems. He holds 18 patents on gravitational and inertial sensors, low-noise electronics, laser modulators, color holography, and novel communication concepts. His awards include the Hughes Staff Doctoral Fellowship for four years, the Hughes Master of Science Fellowship for two years, RESA (Ventura Chapter) Member Research Award, four of the Gravity Research Foundation Awards for Essays, and the 1965 Gravity Research Foundation Outstanding Achievement Award.

Dr. Forward is a Fellow of British Interplanetary Society, Associate Fellow of American Institute of Aeronautics and Astronautics, Senior Member of American Astronautical Society, and Member of Sigma Pi Sigma, Sigma Xi, American Physical Society, and the American Geophysical Union.

Terry C. Cisco (S'64-M'66) received the B.S. degree with honors in engineering physics and the M.S. degree in electrical engineering science, both from the University of California at Berkeley, Berkley, CA.

He is Senior Staff Engineer with the Antennas and Processors Department, Radar Laboratory, Missile Development Division of Hughes Aircraft Company, with 17 years experience in microwave design techniques. He is currently responsible for exploring new developments in microwave integrated circuit (MIC) technology. Previously, he created a MIC design, fabrication, and assembly facility, developed several low-noise FET amplifier designs, and taught computer-aided design classes for the Los Angeles Chapter of the IEEE Microwave Theory and Techniques Society. Prior to joining Hughes, he was Engineering Supervisor at the Electronic Resources Division of Whittaker Corporation, supervising design of coaxial microwave components and developing microwave devices and techniques. He is author of two papers on microwave circuits presented at International Microwave Symposia, a NASA book on computer-aided microstrip design, a patent for a neutron detector, and a patent pending in the field of microwave circuits.

Mr. Cisco is a Member of the Electronic Advisory Board for Glendale College, CA. He is a Registered Professional Engineer in the State of California.